

TETRAHEDRON

Tetrahedron 56 (2000) 805-809

A Stereoselective Synthesis of α-(1-Hydroxyalkyl)-β-Substituted Acrylic Acid Esters

Taïcir Ben Ayed,^a Jean Villiéras^b and Hassen Amri^{c,*}

^aINSAT, B.P. 676 Tunis-1080 Cedex, Tunisia

^bLaboratoire de Synthèse Organique, UMR CNRS 6513, Faculté des Sciences et des Techniques, BP 922082, rue de la Houssinière, F44322 Nantes Cedex 3, France

^cLaboratoire de Chimie Organique et Organométallique, Faculté des Sciences Campus Universitaire-1060, Tunis, Tunisia

Received 8 July 1999; accepted 14 December 1999

Abstract—Nucleophilic substitution of vinylic iodide of methyl 2-(1-hydroxyalkyl)-3-iodo prop-2-enoates 8 in the presence of magnesium dialkyl cuprates generated in situ provided a stereoselective methodology for the synthesis of infrequent β -substituted Baylis–Hillman products. © 2000 Elsevier Science Ltd. All rights reserved.

Since their first synthesis in 1972, α -(1-hydroxyalkyl) acrylic acid derivatives **1** commonly called Baylis–Hillman products¹ have been used by numerous researchers as particularly useful intermediates.² Although the α -hydroxymethylated analogues **2**³ (R=H) have recently been described, the α -substitution of 2-alkenoic esters providing β -branched Baylis–Hillman adducts **3**⁴ is difficult to obtain and has serious limitations. To overcome this problem several chemical solutions have been reported, most of them involving the generation of α -carbanion of α -silvl their derivatives,⁸ Tantalum-acetylenic complex⁹ and Reformatsky-type reaction¹⁰ using Cerium metal, have also been reported. As part of our research program on the synthesis and the reactivity of α -functional acrylic substrates **1**, we have recently reported the first examples of successful tandem: bromination–formylation–hydrolysis of readily available Baylis–Hillman products **1** giving rise to the preparation of (*E*)-2-(hydroxymethyl) alk-2-enoates **4**¹¹ and (*E*,*Z*)-2-(hydroxymethyl) alk-2-enenitriles **5**^{11,12} in good yields (Scheme 1).

Scheme 1.

t-butyl alk-2-enoates⁵ or substituted acetylenic esters⁶ by conjugated addition of mixed alkyl cuprates followed by addition of appropriate electrophiles (aldehyde or ketone). Some analogous α -(1-hydroxyalkyl) acrylic acid esters **1** have been obtained from the reaction coupling of reactive α , β -unsaturated vinyl moieties⁷ which can be generated from hydroalumination of α , β -acetylenic esters or ketones with carbonyl compounds. Alternatively, attempts to use vinyl carbanions derived from acrylic esters and

To complete this series, it was therefore of interest to find a new synthetic way for the preparation of α -(1-hydroxyalkyl)- β -substituted acrylic esters **3**. As reported in the literature, nucleophilic substitution of vinylic halide using organometallic species¹³ is a useful pathway for C–C bond formation. In this area, it occurred to us that the Baylis– Hillman derivatives **5** are ideal candidates for this target but our procedure which serves to prepare dialkyl (*E*)-2-bromomethylene glutarates **7**,¹⁴ failed and yielded epoxides **9**¹⁵ when applied to esters **1** (Scheme 2).

As alternative method, we have applied Lu's technique¹⁶ in which low-valent zirconium (derived from $ZrCl_4$ as Lewis acid) mediates conjugated addition of halide ion to the C–C

Keywords: Baylis-Hillman products; cuprates; nucleophilic substitution; stereoselectivity.

^{*} Corresponding author. Fax: +216-1-88-50-08; e-mail: hassen.amri@fst.rnu.tn

^{0040–4020/00/\$ -} see front matter @ 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4020(99)01079-0

Scheme 2.

triple bond of methyl propiolate. The arised vinyl anion was trapped with varied aldehydes or ketones as electrophiles leading to a stereoselective synthesis of methyl (Z,E)-2-(1-hydroxyalkyl)-3-iodo acrylates **10** (Table 1, Scheme 3).

Scheme 3.

Table 1. Synthesis of methyl 2-(1-hydroxyalkyl)-3-iodo acrylates 10

Entry	R ³	\mathbb{R}^4	Product 10 ¹⁷	Yield (%) ^a	Ratio Z:E ^b
1	<i>n</i> -pentyl	Н	10a	80	72:28
2	<i>i</i> -propyl	Н	10b	78	78:22
3	Methyl	Н	10c	47	70:30
4	Methyl	Methyl	10d	43	100:0

^a Isolated yields of products **8a–d** after column chromatography (silica gel, 2% AcOEt in hexane).

^b All the assigned structures have been confirmed by spectroscopic data

The interesting paper of Guigen Li¹⁷ and co-workers which have investigated a new stereoselective synthesis of compounds **3** via the formation of vinyl anion of β -substituted propiolate using drastic conditions (DIBAH, HMPA, *n*-Bu₂BOTf as catalyst in THF at -78° C), prompts us to report here a convenient method to accomplish a one step synthesis of β -substituted allylic alcohols **3** in high yields involving conjugate addition of organocuprates prepared in situ in THF at low temperature to α -functional- β -iodo acrylic esters **10** (Scheme 4, Table 2).

 β -Halo- α -substituted vinylic systems undergo cuprous salt promoted conjugated addition of Grignard reagents and lithium dialkyl cuprates. Analogue compounds β -substituted by an halogen as a leaving group and bearing α , α -disubstituted strongly electron withdrawing groups like adducts **3** are ambident electrophiles and their reactivity toward nucleophilic reagents has also been documented.¹⁸ In this context, preliminary experiments involved the treatment of functional iodo vinylic products **10** with lithium dialkyl cuprates in varying equivalents. The best results were obtained when cuprates are generated in situ from Grignard reagents (2.2 to 2.7 equiv.) in the presence of LiCuBr₂ as catalyst (3%). As reported in Table 2, the substitution reactions provided α , β -unsaturated esters **3** in high (*Z*)-stereoselectivity (% *Z*/*E*: 55–88/45–12) when applied to a mixture of 3-iodo acrylic esters **10**-(*Z*/*E*) while the substitution of pure **10**-(*Z*) or **10**-(*E*) was stereospecificly leading respectively to **3**-(*Z*) or **3**-(*E*) isomers.

In conclusion, we have demonstrated that Grignard reagents in the presence of 0.1 equiv. of LiCuBr₂ undergo facile reaction with β -iodo- α -functional acrylic esters **10** to provide a substitute method for the hitherto resistant Baylis–Hillman reaction of β -substituted acrylic acid esters.

Experimental

All reactions involving anhydrous conditions were conducted in dry glassware under a nitrogen atmosphere. Solvents were distilled under nitrogen immediately prior to use. Grignard reagents were prepared by the known procedures and stored under inert atmosphere. They were titrated prior to use,¹⁹ i.e. with 1 M solution of benzyl alcohol in toluene and 2,2'-biquinoline as indicator. Reactions were monitored with an Intersmat 20 M gas chromatograph using a 3 m column packed with 10% SE 30 and by TLC on silica gel plates (Fluka Kieselgel 60 F_{254}). For column chromatography, Fluka Kieselgel 70-230 mesh was used. The infrared (IR) spectra were determined on a Perkin–Elmer Paragon 1000 PC spectrophotometer. ¹H and ¹³C NMR (fully decoupled) and spectra were recorded on Bruker AMX 300 in CDCl₃ as solvent and TMS as the internal. GC-MS spectra were obtained using a HP 5890 chromatograph fitted with HP 1 (0.33 μ ×12 m) and HP 5889A quadripolar spectrometer in Electronic Impact (70 eV) or in Chemical Ionization (500 eV) with NH₃ gas. The fragmentation peaks are given in relative intensity (%).

 $Table 2. Synthesis of \alpha - (1-hydroxyalkyl) - \alpha, \beta - unsaturated esters 3 (all reactions were carried out in 10 mmol scale of methyl 2-(1-hydroxalkyl) - 3-iodo prop-2-iodo p$ enoates 10)

Substrate 10	R ³	\mathbb{R}^4	R ⁵ MgX (equiv.)	Time (min)	Product 3a-g	Ratio $(Z:E)^a$	Yield (%) ^b
10a-Z,E	n-Pentyl	Н	i-PrMgCl (2.2)	10	n-C ₅ H ₁₁ H 3a- <i>Z</i> , <i>E</i>	77:23 D ₂ Me	93
10a-Z	n-Pentyl	Н	<i>i</i> -PrMgCl (2.2)	10		100:0 D ₂ Me	94
10a-E	n-Pentyl	Н	i-PrMgCl (2.2)	10		0:100 O ₂ Me	94
10b-Z,E	i-Propyl	Н	n-PrMgCl (2.7)	15		88:12 Me	93
10b-Z,E	<i>i</i> -Propyl	Н	<i>n</i> -C ₆ H ₁₃ MgBr (2.5)	15		86:14 / e	95
10b-Z	<i>i</i> -Propyl	Н	<i>n</i> -BuMgBr (2.5)	15		100:0 9	93
10b-Z	<i>i</i> -Propyl	Н	<i>c</i> -C ₆ H ₁₁ MgCl (2.6)	15		100:0 1e	96
10c- <i>Z</i> , <i>E</i>	Methyl	Н	i-BuMgBr (2.5)	15		55:45 e	86
10d-Z	Methyl	Me	<i>i</i> -BuMgBr (2.7)	30	OH CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	100:0 e	88

^a Stereochemistry of products was refered to the pure corresponding 3-iodo vinylic ester **10**-*Z* or **10**-*E* previously separated from the mixture. ^b Yields of isolated alcohols **3a**-**g** after silica gel chromatography (10% AcOEt in hexane).

Synthesis of methyl (*Z*,*E*)-2-(1-hydroxyalkyl)-3-iodo prop-2-enoates 10

Typical procedure. To a mixture of methyl propiolate (0.84 g, 10 mmol), hexanal (1.2 g, 12 mmol) and Bu₄NI (4 g, 11 mmol) in anhydrous CH₂Cl₂ (50 mL) was added ZrCl₄ (2.8 g, 12 mmol) at 0°C. After stirring at 0°C under N₂ for 5 h, the reaction was complete as monitored by TLC. Water (5 mL) was then added and followed by extraction with CH₂Cl₂ (3×50 mL). The combined organic layers were dried (MgSO₄) and evaporated under reduced pressure. The resulting residue was separated by chromatography on silca gel (2% AcOEt in hexane) to give **10a**-*Z*,*E* (80%). IR (neat): 1210, 1590, 1720, 3448 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$ 0.90 (t, 3H, *J*=7.1 Hz, *CH*₃(CH₂)₄); 1.2–1.6 (m, 8H, CH₃(CH₂)₄); 3.6 (br, 1H); 3.80 (s, 3H, OCH₃); 4.36 (m, 1H); 7.10 (s, 1H). *m/z* (C.I.) 313 (M⁺-OH, 4%); 241 (100).

Synthesis of methyl 2-(1-hydroxyalkyl) alk-2-enoates 3

General procedure. An ether or THF solution of alkylmagnesium halide RMgX (2.2 to 2.7 equiv.) was added dropwise over a period of 15–20 min to a mixture of 2-(1-hydroxyalkyl)-3-iodo acrylate *10* (10 mmol) and LiCuBr₂ (0.3 mL) in dry THF (40 mL) at -30° C under N₂. After a few minutes (TLC) at -30° C, the reaction mixture was quenched with a saturated NH₄Cl solution (20 mL), extracted with ether (3×30 mL) and subjected to standard workup. The crude methyl 2-(1-hydroxyalkyl) alk-2-enoates *3* were chromatographed on silica gel with 10% ethyl acetate in hexane as eluent.

Methyl (*Z*,*E*)-2-(1-hydroxyhexyl)-4-methyl pent-2-enoate 3a-*Z*,*E*. IR (neat): 1642, 1709, 3448 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$ 0.88 (t, 3H, *J*=6.6 Hz, *CH*₃CH₂); 1.10 (m, 6H, (*CH*₃)₂CH); 1.28 (m, 6H, CH₃(*CH*₂)₃CH₂); 1.59 (m, 2H, CH₂CH₂CHOH); 2.70 (s br, 1H, OH); 3.07 (m, 1H, =CHCH(CH₃)₂); 3.77 (s, 3H, CH₃O); 4.19 (t, 1H, *J*=6.7 Hz, CH₂CHOH); 5.87 (d, 1H, *J*=9.9 Hz, CHCH=C, *Z*); 6.56 (d, 1H, *J*=10.4 Hz, CHCH=C, *E*). ¹³C NMR (75 MHz, CDCl₃) $\delta_{\rm C}$ 13.9 (*C*H₃CH₂); 22.2, 22.4 (CH₃CH₂); 22.5 (*C*H₃)₂CH); 25.5, 25.7 (*C*H₂CH₂CH₃); 27.2, 28.3 (*C*H₂CH₂CHOH); 31.4, 31.5 (*C*H₃O); 36.4, 37.1 (CH₂CH₂CHOH); 51.2 (*C*HC=C); 69.0, 74.0 (*C*HOH); 130.6, 131.8 (HC=*C*); 148.2, 150.2 (*C*H=C); 168.1 (COO). *m*/*z* (C.I.) 157 (M⁺-*n*-C₅H₁₁, 58%); 125 (100).

Methyl (*Z*)-2-(1-hydroxyhexyl)-4-methyl pent-2-enoate 3a-Z. IR (neat): 1646, 1712, 3447 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$ 0.88 (t, 3H, *J*=6.8 Hz, *CH*₃CH₂); 1.01 (2d, 6H, *J*=6.6 Hz, (*CH*₃)₂CH); 1.28 (m, 6H, CH₃(*CH*₂)₃CH₂); 1.59 (m, 2H, CH₂CH₂CHOH); 2.70 (s br, 1H, O*H*); 3.07 (m, 1H, =CHC*H*(CH₃)₂); 3.77 (s, 3H, CH₃O); 4.19 (t, 1H, *J*=6.7 Hz, CH₂CHOH); 5.87 (d, 1H, *J*=9.9 Hz, CHC*H*=C). ¹³C NMR (75 MHz, CDCl₃) $\delta_{\rm C}$ 13.7 (*CH*₃CH₂); 22.2 (CH₃CH₂); 22.3 (*CH*₃)₂CH; 25.5 (*CH*₂CH₂CH₃); 28.3 (*CH*₂CH₂CHOH); 31.4 (*CH*₃O); 36.4 (*CH*₂CHOH); 51.2 (*CH*C=C); 74.0 (*C*HOH); 131.8 (HC=C); 148.2 (*C*H=C); 168.1 (*C*OO). *m*/*z* (C.I.) 157 (M⁺-*n*-C₅H₁₁, 58%); 125 (100).

Methyl (*E*)-2-(1-hydroxyhexyl)-4-methyl pent-2-enoate 3a-*E*. IR (neat): 1642, 1712, 3448 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$ 0.88 (t, 3H, *J*=6.7 Hz, *CH*₃CH₂); 1.05 (2d, 6H, *J*=10.2 Hz, (*CH*₃)₂CH); 1.26–1.51 (m, 8H, CH₃(*CH*₂)₄); 1.84 (s br, 1H, CHO*H*); 2.75 (m, 1H, =CHC*H*(CH₃)₂); 3.75 (s, 3H, *CH*₃O); 4.19 (t, 1H, *J*=6.7 Hz, CH₂CHOH); 6.56 (d, 1H, *J*=10.5 Hz, CHC*H*=C). ¹³C NMR (75 MHz, CDCl₃) $\delta_{\rm C}$ 13.9 (*C*H₃CH₂); 22.1 (CH₃CH₂), 22.5 ((*C*H₃)₂CH); 25.7 (*C*H₂CH₂CH₃); 27.2 (*C*H₂CH₂CHOH); 31.5 (*C*H₃O); 37.1 (*C*H₂CHOH); 51.2 (*C*HC=C); 69.0 (*C*HOH); 130.6 (HC=*C*); 150.2 (*C*H=C); 168.1 (*C*OO). *m*/*z* (C.I.) 157 (M⁺-*n*-C₅H₁₁, 57%); 125 (100).

Methyl (Z,E)-2-[(1-hydroxy-2-methyl) propyl] hex-2-enoate **3b-Z,E.** IR (neat): 1638, 1709, 3448 cm⁻¹. ¹H NMR $(300 \text{ MHz}, \text{ CDCl}_3) \delta_H 0.93-1.08 \text{ (m, 9H, (CH_3)_2CH,}$ CH₃CH₂); 1.45 (m, 2H, CH₃CH₂CH₂); 1.81 (m, 1H, $(CH_3)_2CHCHOH);$ 2.37 (td, 2H, J=7.4, 7.4 Hz, $CH_2CH_2CH=$); 3.00 (s br, 1H, OH); 3.76 (s, 3H, CH₃O); 3.88 (d, 1H, J=7.4 Hz, (CH₃)₂CHCHOH); 6.07 (t, 1H, J=7.4 Hz, CH₂CH=C, Z); 6.87 (t, 1H, J=7.4 Hz, CH₂CH=C, E). ¹³C NMR (75 MHz, CDCl₃) δ_C 13.6 (CH₃CH₂); 18.0, 19.3 ((CH₃)₂CH); 22.3 (CH₂CH₂CH₃); 32.8 31.2 (*C*H₃O); (CHCHOH); 51.1, 51.4 (C=CHCH₂CH₂); 79.7, 80.6 (CHOH); 131.8, 133.2 (HC=C); 142.5, 144.9 (CH=C); 168.1 (COO). m/z (C.I.) 157 (M^+ -*i*-C₃H₇, 57%); 125 (100).

Methyl (Z,E)-2-[(1-hydroxy-2-methyl) propyl] non-2-enoate **3c-Z,E.** IR (neat): 1638, 1708, 3467 cm^{-1} . ¹H NMR $(300 \text{ MHz}, \text{ CDCl}_3) \delta_H 0.74-0.87 \text{ (m, 9H, (CH_3)_2CH,}$ CH₃CH₂); 1.19 (m, 6H, CH₃(CH₂)₃CH₂); 1.34 (m, 2H, CH₂CH₂CH₂); 1.74 (m, 1H, (CH₃)₂CHCHOH); 2.31 (td, 2H, J=7.2, 7.2 Hz, CH₂CH₂CH=); 3.15 (s br, 1H, OH); 3.69 (s, 3H, CH₃O); 3.82 (d, 1H, J=7.2 Hz, CHCHOH); 6.00 (t, 1H, J=7.5 Hz, CH₂CH=C, Z); 6.75 (t, 1H, J=7.5 Hz, CH₂CH=C, E). ¹³C NMR (75 MHz, CDCl₃) $\delta_{\rm C}$ (*C*H₃(CH₂)₅); 17.7, 19.2 ((*C*H₃)₂CH); 13.7 22.3(CH₂CH₂CH₃); 29.0, 29.1, 29.3 ((CH₂(CH₂)₃CH₂); 31.3 (CH₃O); 32.7 (CHCHOH); 50.8, 51.2 (C=CHCH₂); 79.2, 80.5 (CHOH); 131.6, 133.1 (HC=C); 142.3, 145.0 (CH=C); 168.0 (COO). m/z (C.I.) 199 (M⁺-*i*-C₃H₇, 81%); 167 (100).

Methyl (*Z*)-2-[(1-hydroxy-2-methyl) propyl] hept-2-enoate 3d-Z. IR (neat): 1642, 1709, 3448 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$ 0.82–0.96 (m, 9H, (*CH*₃)₂CH, *CH*₃CH₂); 1.30–1.42 (m, 4H, CH₃(*CH*₂)₂CH₂); 1.82 (m, 1H, (*CH*₃)₂*CHCHOH*); 2.40 (td, 2H, *J*=7.1, 7.1 Hz, *CH*₂*CH*₂CH=); 3.09 (s br, 1H, OH); 3.75 (s, 3H, *CH*₃O); 3.89 (d, 1H, *J*=7.3 Hz, CHCHOH); 6.08 (t, 1H, *J*=7.5 Hz, *CH*₂*CH*=C). ¹³C NMR (75 MHz, CDCl₃) $\delta_{\rm C}$ 13.6 (*CH*₃CH₂); 17.9, 19.3 ((*CH*₃)₂CH); 22.1 (*CH*₂CH₃); 28.9 (*CH*₂CH₂CH₃); 31.1 (*CH*₃O); 32.8 (*C*HCHOH); 51.0 (C=CHCH₂); 79.6 (*C*HOH); 133.0 (HC=*C*); 142.5 (*C*H=C); 168.1 (*C*OO). *m*/*z* (C.I.) 171 (M⁺-*i*-C₃H₇, 60%); 139 (100).

Methyl (*Z*)-2-[(1-hydroxy-2-methyl) propyl]-3-cyclohexyl prop-2-enoate 3e-Z. IR (neat): 1638, 1718, 3448 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$ 0.83, 0.94 (2d, 6H, *J*=6.6 Hz, (CH₃)₂CH); 1.20–1.28 (m, 6H, cC₆H₁₁); 1.71 (m, 4H, cC₆H₁₁); 1.79 (m, 1H, (CH₃)₂CHCHOH); 2.72 (m, 1H, cC₆H₁₁); 2.93 (s br, 1H, OH); 3.75 (s, 3H, CH₃O); 3.85 (d,

1H, *J*=7.3 Hz, (CH₃)₂CHCHOH); 5.86 (d, 1H, *J*=9.9 Hz, c(C₆H₁₁)CH=C). ¹³C NMR (75 MHz, CDCl₃) $\delta_{\rm C}$ 17.9, 19.3 ((CH₃)₂CH); 25.2, 25.3, 25.6, 32.4, 32.8, 51.0 (cC₆H₁₁); 32.3 (CH₃O); 38.0 (CHCHOH); 79.6 (CHOH); 133.0 (HC=C); 147.4 (CH=C); 168.2 (COO). *m*/*z* (C.I.) 197 (M⁺-*i*-C₃H₇, 59%); 165 (100).

Methyl (*Z*,*E*)-2-(1-hydroxyethyl)-5-methyl hex-2-enoate 3f-*Z*,*E*. IR (neat): 1640, 1707, 3447 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$ 0.92, 0.95 (2d, 6H, *J*=6.8 Hz, (CH₃)₂CH); 1.33, 1.39 (2d, 3H, *J*=6.4 Hz, CH₃CHOH); 1.72 (m, 1H, (CH₃)₂CHCH₂); 2.12, 2.31 (2m, 2H, CHCH₂CH=); 3.3 (s br, 1H, OH); 3.76 (s, 3H, CH₃O); 4.62, 4.71 (2q, 1H, *J*=7.2 Hz, CH₃CHOH); 6.19 (t, 1H, *J*=7.5 Hz, CH₂CH=C, *Z*); 6.74 (t, 1H, *J*=7.5 Hz, CH₂CH=C, *E*). ¹³C NMR (75 MHz, CDCl₃) $\delta_{\rm C}$ 22.1, 22.2 (CH₃)₂CH; 22.6, 22.9 (CHCH₂CH=); 28.1, 28.4 (CH₃O); 36.6, 36.9 (CH₃CHOH); 51.0 (CH₂CH=C); 64.7, 68.6 (CHOH); 134.1, 135.9 (HC=C); 139.6, 142.1 (CH=C); 167.4, 169.9 (COO). *m*/*z* (C.I.) 171 (M⁺-CH₃, 27%); 43 (100).

Methyl (*Z*)-2-[(1-hydroxy-1-methyl) ethyl]-5-methyl hex-2-enoate 3g-Z. IR (neat): 1654, 1725, 3448 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$ 0.9 (d, 6H, *J*=6.7 Hz, (CH₃)₂CH); 1.41 (s, 6H, (CH₃)₂COH); 1.69 (m, 1H, (CH₃)₂CHCH₂); 2.07 (dd, 2H, *J*=7.2, 7.2 Hz, CHCH₂CH=); 3.12 (s br, 1H, OH); 3.79 (s, 3H, CH₃O); 5.98 (t, 1H, *J*=7.5 Hz, CH₂CH=C). ¹³C NMR (75 MHz, CDCl₃) $\delta_{\rm C}$ 22.2 (CH₃)₂CH; 28.4 (CHCH₂CH=); 29.3 (CH₃O); 38.4 (CH₃)₂COH; 51.2 (CH₂CH=C); 71.6 (CHOH); 133.1 (HC=C); 140.3 (CH=C); 169.7 (COO). *m/z* (C.I.) 185 (M⁺-CH₃, 51%); 153 (100).

Acknowledgements

We thank the Coopération Universitaire et Scientifique Franco-Tunisienne (CMCU), DGRST and the Pharmacie Centrale de Tunisie for financial support. The authors would like to thank T. Labassi for his assistance in the English discussions.

References

1. For review see: (a) Ciganek, E. Org. React. 1977, 51, 201-350.

(b) Basavaiah, D.; Rao, P. D.; Hyma, R. S. *Tetrahedron* **1996**, *52*, 8001–8062.

2. (a) Drewes, S. E.; Roos, G. H. P. Tetrahedron 1988, 44, 4653-

4670. (b) Hoffmann, H. M. R.; Rabe, J. Angew. Chem., Int. Ed. Engl. 1985, 24, 94–110.

3. Villiéras, J.; Rambaud, M. Synthesis 1982, 924-926.

4. Drewes, S. E.; Njamela, O. L.; Emslie, N. D.; Ramesar, N.; Field, J. S. Synth. Commun. **1993**, 23, 2807–2815.

5. Sato, Y.; Takeuchi, S. Synthesis 1983, 734-735.

6. (a) Marino, J. P.; Linderman, R. J. J. Org. Chem. 1981, 46, 3696–3702. (b) Marino, J. P.; Linderman, R. J. J. Org. Chem. 1983, 48, 4621–4628.

7. (a) Tsuda, T.; Yoshida, T.; Kawamoto, T.; Saegusa, T. *J. Org. Chem.* **1987**, *52*, 1624–1627. (b) Tsuda, T.; Yoshida, T.; Saegusa, T. *J. Org. Chem.* **1988**, *53*, 1037–1040.

8. (a) Feit, B. A.; Melamed, U.; Schmidt, R. R.; Speer, H. J. Chem. Soc., Perkin Trans. 1 **1981**, 1329–1337. (b) Rollinson, S. W.; Amos, R. A.; Katzenellenbogen, J. A. J. Am. Chem. Soc., **1981**, 193, 4114–4125.

9. (a) Takai, K.; Kataoka, Y.; Utimoto, K. J. Org. Chem.
1990, 55, 1707–1708. (b) Takai, K.; Tezuka, M.; Utimoto, K. J. Org. Chem. 1991, 56, 5980–5982. (c) Kataoka, Y.; Miyai, J.; Tezuka, M.; Takai, K.; Utimoto, K. J. Org. Chem., 1992, 57, 6796–6802.

10. Imamoto, T.; Kusumoto, T.; Tawarayama, Y.; Sugiura, Y.; Mita, T.; Hatanaka, Y.; Yokoyama, M. *J. Org. Chem.* **1984**, *49*, 3904–3912.

11. Beltaïef, I; Hbaïeb, S.; Besbes, R.; Amri, H.; Villiéras, M.; Villiéras, J. *Synthesis* **1998**, 1765–1768.

12. Aiai, M.; Baudy-Floc'h, M.; Robert, A.; Le Grel, P. *Synthesis* **1996**, 403–406.

13. (a) Decaux, L.; Vessière, R. *C. R. Acad. Sci. Paris, Ser. C* **1968**, 267, 738–74. (b) Duboudin, B.; Jousseaume, B.; Bonakdar, A.; Saux, A. *J. Organomet. Chem.* **1979**, *168*, 227–232. (c) Rappoport, Z. *Acc. Chem. Res.*, **1981**, *14*, 7–15.

14. Ben Ayed, T.; El Gaïed, M. M.; Amri, H. Synth. Commun. 1995, 25, 2981–2987.

- 15. Ben Ayed, T.; Amri, H.; El Gaïed, M. M. *Tetrahedron* **1991**, 47, 9621–9628.
- 16. Zhang, C.; Lu, X. Synthesis 1996, 586-588.

17. Li, G.; Wei, H.-X.; Willis, S. Tetrahedron Lett. 1998, 39, 4607-4610.

18. Rappoport, Z.; Topol, A. J. Chem. Soc., Perkin Trans 2 1975, 863–874.

19. Watson, S. C.; Eastham, J. F. J. Organomet. Chem. 1967, 9, 165–168.